大发注册|大发注册
大发注册2024-02-19

户外运动爱好者必须了解的常见运动损伤及处理原则******

  江苏省体育科学研究所 杨文贤

  2022年,借助各大网络平台的分享转发,一系列小众运动如飞盘、腰旗橄榄球、徒步、攀岩这些户外运动受到许多年轻人的追捧,成功吸引到一大批群体成为户外运动的忠实爱好者。

  到户外走动是保持健康和接触大自然的好方法,但是户外运动引起的相关伤害也会显著增加。据统计,每年有超过350万的人群因运动或参加娱乐活动而受伤。即使是专业运动员,虽然他们在大多数运动伤病中恢复得相当快,但如果得不到及时解决,也可能意味着运动员生涯的提前结束。

  新冠康复后,外出运动是一个好的选择,可以帮助呼吸的恢复,但对于户外运动的新手爱好者而言,不仅要面对如何在冬季寒冷的低温下保持良好运动状态的考验,了解不同运动可能会引起的身体伤害以及学会自我预防及处理,同样也是重中之重。对此,根据运动科学专家Jill Horbacewicz的建议,我们为广大的户外运动爱好者们编制了一份关于运动损伤的友好指南。

  以下是最常见的几种户外运动伤害以及如何预防这些伤害的提示。

  1.扭伤

  扭伤是一种影响韧带的损伤(韧带是连接骨骼和关节的组织)——最常见的形式是过度拉伸导致的撕裂。扭伤通常是由于快速扭转或其他笨拙的运动(包括跌倒)发生的。而其中,踝关节扭伤是最常见的扭伤形式,以疼痛和肿胀为特征。损伤通常发生在外侧韧带上,严重程度可以从拉伤到撕裂。对于户外运动爱好者而言,脚踝扭伤通常发生在精神注意力不集中时。因此,在运动过程中注意不要向前看地形中的突起,认真走好脚下的路,这对徒步爱好者而言尤其重要。

  一旦发生扭伤,请立刻停止运动并休息,有条件的可以对受伤部位进行冰敷。如果疼痛严重,请就医进一步治疗。

  2.拉伤

  肌肉纤维或肌腱撕裂时会出现拉伤,多数情况下是由于突然运动造成的,在网球运动员、高尔夫球手和曲棍球运动员中很常见。拉伤可能导致肌肉痉挛、肿胀和难以移动受影响的身体部位,这通常局限于腿部、手臂、颈部和背部。偶尔可能需要手术来解决严重的拉伤,但大多数情况下通过休息、冰敷以及在某些情况下使用拐杖即可治愈。

  3.应力性骨折

  在户外运动中,应力性骨折是一种比较常见的损伤情况。这是过度使用导致的损伤,通常体现在小腿或足部骨骼出现裂缝。人们很容易通过疼痛的部位和感受来判断是肌肉问题还是应力性骨折。如果是肌肉问题,身体疼痛的感受会更加弥散,对于应力性骨折,疼痛局限于一个部位且感受更加尖锐。

  如果出现骨折,即使是轻度骨折也应被视为需要立即治疗的医疗紧急情况。可能需要石膏来促进愈合,并且恢复时间可能比许多其他类型的运动损伤相关的时间更长,甚至也可能需要手术来修复。

  4.足底筋膜炎

  足底筋膜炎是一种足部疾病,在跑步者以及以下肢运动为主的项目中最为常见。足底筋膜是一条组织带,从足跟一直延伸到脚趾,它的损伤特点是脚后跟或脚底感到疼痛。导致足底筋膜炎的生物学因素包括旋前困难、高足弓或扁平足、紧绷的跟腱和紧绷的小腿肌肉。

  足底筋膜炎的治疗流程可以称为RICE。Rest、Ice、Compression和Elevation的首字母缩写词,这也是绝大部分运动损伤的处理原则。除此以外,可能还需要使用布洛芬来减轻炎症,同时进行拉伸(适当的时候)和按摩以缓解紧绷感。

  5.髂胫束综合征

  髂胫束综合征也是跑步者以及下肢运动最常见的过度使用损伤之一。髂胫束是一条从臀部外侧向下延伸到膝盖外侧直到胫骨的组织带。疼痛通常是由髂胫束在胫骨外侧(膝盖处)摩擦引起的。当在不平坦的表面上进行下肢运动以及肌肉组织变得紧绷时,该部位的摩擦会变得更加严重。穿破旧或不合适的鞋子也有可能导致髂胫束综合征。

  因此,面对这种情况,首选是停止下肢运动,拉伸放松肌肉组织,选择合适的穿戴装备。严重时,可能需要相应的矫形器来解决因身体形态变化产生的力学问题。

  6.腰痛

  腰痛可能是由于腘绳肌紧绷、肌肉不平衡、核心肌无力、姿势不良、不正确的运动形式和跌倒造成的。大多数腰痛是由肌肉组织的失调和虚弱引起的。为了防止进一步的问题,日常生活中就要时刻注意脊柱的正确形式和中立对齐。

  腰痛人群要加强核心,伸展腿部、腰部、腰椎和臀部。锻炼后使用RICE方法缓解疼痛。

  7.膝痛

  膝痛在热爱运动的人群中并不少见,尤其是跑步者以及其他下肢运动中。大多数膝盖问题源于过度使用、磨损、穿着不正确的鞋子、肌肉不平衡或异常,例如腿长不均匀、弓形腿和膝盖受伤等。

  膝盖疼痛的治疗与其他损伤有所不同。通常,膝盖疼痛会随着肌肉力量训练、合适的鞋型或矫形器而消失。如果疼痛持续2周或更长时间,则需要及时向专业人员咨询,例如运动医学医生或足病医生。当然,在日常的预防中,也要注意穿着适合的鞋来进行运动。

  说了这么多常见的运动损伤,相信各位发烧友们对于运动损伤一定有了自己的判断。但其实在运动中,最容易被大家忽略的其实是下面这类,我们将其称为“周末勇士”综合征。

  整周久坐不动,然后在周末到来时进行大强度运动甚至过度运动极有可能会引起运动损伤。如果你整个冬天都没有跟上一项活动,请不要在夏天到来之际直接加入一项新的运动。你需要慢慢增加强度和频率,让你的身体适应你对它的要求。

  最后,为了让大家真正享受到户外运动的乐趣,我们还有更多提示:

  ●运动前热身;

  ●佩戴合适的装备:无论是头盔、合适的鞋子、防护垫等,都会降低受伤的风险;

  ●保持水分:脱水会对性能产生负面影响,并导致肌肉疲劳或过度劳累,从而增加受伤的机会。确保在任何体育活动之前、期间和之后喝大量的水;

  ●知道何时停止:在受伤时忍耐疼痛或继续运动会很快导致后续受伤和较长的恢复时间。知道何时休息对于保持运动的活跃度至关重要。如果你在项目中已经很累,那么就不要继续运动了,疲劳时受伤的可能性要大得多;

  ●练习正确的技术:户外运动伤害的另一个主要因素是不正确的技术,它几乎可以影响任何人,无论是什么运动项目,学习如何正确的技术和发力均有助于预防一些最常见的运动损伤。

  ●小窍门:保护、休息、冰敷、加压、抬高。①保护受伤的部位,不让它受到第二次损伤。②针对限制患处的活动的休息,肌肉及韧带损伤后,局部制动是关键的。③及时的对患处进行冰敷可以减少出血、缓解疼痛、炎症的控制等。④加压一般在受伤后的24—48小时内实施,可以限制患处进一步的肿胀,常使用加压绷带包扎伤口,加压要从离心脏远的那端一层层向近端包扎,切记不要包扎过紧,包扎过紧极易引起局部肌肉坏死。加压时可以配合冰敷同步进行。⑤抬高是将患处抬高,更多的是利用重力帮助血液及组织液回流来减少受伤部位肿胀,缓解疼痛。

大发注册

科学家成功合成铹的第14个同位素******

  超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素。铹-251具有α衰变性,可以发射出两个不同能量的α粒子。

  超重元素的合成及其结构研究是当前原子核物理研究的一个重要前沿领域。铹是可供合成并进行研究的一种超镄元素,引起了人们极大的兴趣。

  近日,科研人员利用美国阿贡国家实验室充气谱仪(AGFA)成功合成了超镄新核素铹-251。相关成果发表于核物理学领域期刊《物理评论C》。

  此次合成铹的新同位素,运用了什么技术方法?合成得到的铹-251,具有什么基本特征?合成的铹-251对于物理、化学等学科的研究来说具有什么意义?针对上述问题,记者采访了这一工作的主要完成人之一,中国科学院近代物理研究所副研究员黄天衡。

  不断进行探索,再次合成铹同位素

  铹的化学符号为Lr,原子序数为103,是第11个超铀元素,也是最后一个锕系元素。“一般来说,原子序数大于铹的元素被称为超重元素。”黄天衡介绍。

  质子数相同而中子数不同的同一元素的不同核素互称为同位素。同一种元素的同位素在化学元素周期表中占有同一个位置,同位素这个名词也因此而得名。

  103号元素由阿伯特·吉奥索等科研人员于1961年首次合成。为纪念著名物理学家欧内斯特·劳伦斯,103号元素被命名为铹。锕系元素是元素周期表ⅢB族中原子序数为89—103的15种化学元素的统称,其中,铹元素在锕系元素中排名最后。

  截至目前,科研人员们共合成了铹的14个同位素,质量数分别为251—262、264、266。目前合成的铹的14个同位素中,铹-251至铹-262是在实验中通过熔合反应直接合成的,铹-264和铹-266则是将原子序数更高的核素通过衰变生成的。

  目前,铹的化学研究中最常使用的同位素是铹-256和铹-260。科研人员通过化学实验证实铹为镥的较重同系物,具有+3氧化态,可以被归类为元素周期表第七周期中的首个过渡金属元素。由于铹的电子组态与镥并不相同,铹在元素周期表中的位置可能比预期的更具有波动性。在核结构研究方面,受限于合成截面等原因,目前的研究仅集中在铹-255上。然而即使是铹-255,其结构能级的指认目前也还存有争议。

  通过熔合反应,形成新的原子核

  铹和其他原子序数大于100的超镄元素一样,无法通过中子捕获生成。目前铹只能在重离子加速器中通过熔合反应合成。由于原子核都具有正电荷而会相互排斥,因此,只有当两个原子核的距离足够近的时候,强核力才能克服上述排斥并发生熔合。粒子束需要通过重离子加速器进行加速。在轰击作为靶的原子核时,粒子束的速度必须足够大,以克服原子核之间的排斥力。

  “仅仅靠得足够近,还不足以使两个原子核发生熔合。两个原子核更可能会在极短的时间内发生裂变,而非形成单独的原子核。”黄天衡介绍,如果这两个原子核在相互靠近的时候没有发生裂变,而是熔合形成了一个新的原子核,此时新产生的原子核就会处于非常不稳定的激发态。为了达到更稳定的状态,新产生的原子核可能会直接裂变,或放出一些带有激发能量的粒子,从而产生稳定的原子核。

  在此次实验中,科研人员利用美国阿贡国家实验室ATLAS直线加速器提供的钛-50束流轰击铊-203靶,通过熔合反应合成了目标核铹-251。这个新的原子核产生后,会和其他反应产物一起被传输到充气谱仪(AGFA)中。在充气谱仪(AGFA)中,铹-251会被电磁分离出来,并注入到半导体探测器中。探测器会对这个新原子核注入的位置、能量和时间进行标记。

  “如果这个原子核接下来又发生了一系列衰变,这些衰变的位置、能量和时间将再次被记录下来,直至产生了一个已知的原子核。该原子核可以由其所发生的衰变的特定特征来识别。”黄天衡说。根据这个已知的原子核以及之前所经历的系列连续衰变的过程,科研人员可以鉴别注入探测器的原始产物是什么。

  超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素(具有相同中子数的核素),还是利用充气谱仪(AGFA)合成的首个新核素。目前的实验结果表明,铹-251具有α衰变性,可以发射出两个不同能量的α粒子。

  拓展新的领域,推动超重核理论研究

  由于形变,若干决定超重核稳定岛位置的关键轨道能级会降低到质子数Z约等于100、中子数N约等于152核区的费米面附近。对于这一核区的谱学研究可以对现有描述稳定岛的各个理论模型进行严格检验,从而进一步了解超重核稳定岛的相关性质。由于上述原因,对于这一核区的谱学研究是当下探索超重核结构性质的热点课题。

  此前的理论模型均无法准确地描述这一核区铹的质子能级演化,相关的实验数据十分有限。“本次实验的初衷为把铹的结构研究进一步拓展到丰质子区,尝试开展系统性的研究。”黄天衡表示。

  研究结果表明,形成超重核稳定岛的关键质子能级在铹的丰质子同位素中存在能级反转现象。此外,研究人员还通过推转壳模型下粒子数守恒方法(PNC-CSM)较好地描述了这一现象,并指出了ε_6形变在这一核区的质子能级演化中起到的重要作用。

  “此次研究指出了ε_6形变在铹的丰质子核区的质子能级演化中起到的重要的作用,对现有的理论研究提出了新的挑战,将推动超重核领域相关理论研究的发展。”黄天衡说。(记者颉满斌)

中国网客户端

国家重点新闻网站,9语种权威发布

大发注册地图